Enrollment No:-	Exam Seat No:-

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 2TE03TDY1 Subject Name: Thermodynamics

Course Name: Diploma (Mechanical) Date: 6/5/2015

Semester:III Marks: 70

Time:2:30 TO 05:30

Instructions:

- 1) Attempt all Questions of both sections in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Q-1		Do as directed.	14
_	(A)	What is Flow work?	
	(B)	What is heat pump?	
	(C)	Give the examples of intensive properties.	
	(D)	What is specific heat?	
	(E)	What is enthalpy?	
	(F)	Give the examples of the systems having fixed boundary.	
	(G)	Define system	
	(H)	State zeroth law of thermodynamics	
	(I)	What is Heat Engine?	
	(J)	What is refrigerator?	
	(K)	Define sink	
	(L)	Write an Expression For Thermal Efficiency of Brayton Cycles.	
	(M)	Define entropy	
	(N)	State law of conservation of energy.	
		Attempt any four questions from following.	
Q-2	(A)	Derive Characteristic gas equation and also derive relationship	7
		between Cp, Cv and R.	
	(B)	Explain various thermodynamic systems with example.	7
Q-3	(A)	Give the comparison of path function and point function.	7
	(B)	A heat engine receives energy of 1764 kJ/min and doing work of 8.826 kW.	7
		Find out thermal efficiency and heat rejection rate.	
Q-4	(A)	Write steady flow energy equation with meaning of each term and	7
		apply it to steam turbine and throttling process	
	(B)	State first law of thermodynamics and prove internal energy is a	7
		property	
Q-5	(A)	One kg of gas enclosed in a closed vessel heated from 2 bar to 5bar. The initial temperature of gas is 27° C Find (i) FinalTemperature (ii) Change in internal energy if $Cv = 0.72$ KJ/kgK .	7

	(B)	State limitation of first law of thermodynamics and write statement	
		of Kelvin-Planck and Clausius for second law of thermodynamics	
Q-6	(A)	State various laws of gas and give its PVT relation.	7
	(B)	0.1 m ³ of air at a pressure of 1.5 bar is expanded isothermally to 0.5 m ³ volume. Calculate the final pressure of the gas and heat supplied during the process.	7
Q-7	(A)	1	7
		(1) For constant compression ratio and heat addition	
		(2) For constant compression ratio and heat rejection.	
	(B)	An engine working on diesel cycle has a compression ratio of 15 and expansion ratio of 7.5. Find out cut off ratio and air standard efficiency. Take $\gamma=1.4$	7
Q-8	(A)	Explain Otto cycle with P-V and T-S diagram and derive equation of thermal efficiency for this cycle.	7
	(B)	An engine working on Otto cycle has a cylinder diameter of 150mm and a stroke of 225 mm. the clearance volume is 125×10^{-5} m ³ find out air standard efficiency of engine .Take $\gamma=1.4$	7

પ્ર-૧		નીચેનાપ્રશ્નોનામાંગ્યામુજબજવાબોઆપો.	٩ ४
	(A)	ફ્લોવર્કએટલેશું?	
	(B)	હીટપમ્પએટલેશું?	
	(C)	ઇન્ટેન્સીવગુણધર્મોનાઉદહરણોઆપો	
	(D)	વિશિષ્ટઉષ્માએટલેશુ?	
	(E)	એન્થાલ્પીએટલેશુ?	
	(F)	સ્થાયીબાઉંડ્રીધરાવતીપ્રણાલીઓનાઉદહરણોઆપો.	
	(G)	સિસ્ટમનીવ્યાખ્યાઆપો.	
	(H)	થર્મોડાયનેમિકનોશુન્યનોનીયમલખો.	
	(I)	હીટએંજીનએટલેશુ?	
	(J)	રેફ્રીજરેટરએટલેશુ?	
	(K)	શીંકનીવ્યાખ્યાઆપો.	
	(L)	બ્રેટોનસાયકલનીઉષ્મીયકાર્યદક્ષતાનુસુત્રલખો.	
	(M)	એન્ટ્રોપીનીવ્યાખ્યાઆપો.	
	(N)	ઊર્જાસંયયનોનિયમદર્શાવો.	
		નીચેનાપ્રશ્નોપૈકીકોઇપણચારનાજવાબોલખો.	
પ્ર-૨	(A)	વાયુનુલાક્ષણિકસમીકરણતારવોઅનેCp, Cvઅને Rવચ્ચેસંબંધપ્રસ્થાપિતકરો.	و
	(B)	વિવિધથર્મોડાયનેમિકપ્રણાલીઓઉદહરણસહિતસમજાવો.	و
у -3	(A)	પાથફન્ક્શનઅનેપોઈંટફન્ક્શનનીતુલનાકરો.	و
	(B)	એકહ્રીટએન્જીનને1764 kJ/min હ્રીટએનર્જીઆપવામાંઆવેછેતે8.826	و
		kWકાર્યકરેછે. તોએન્જીનનીઉષ્મીયદક્ષતાઅનેઉષ્માછોડવાનોદરશોધો.	
y-8	(A)	સ્ટેડીફ્લોએનર્જીસમીકરણતેનાદરેકપદનાઅર્થસાથેલખોઅનેસ્ટીમટરબાઇનઅને	و
		થ્રોટલીંગનીપ્રક્રિયામાટેતેનોઉપયોગકરો.	
	(B)	થર્મોડાયનેમિક્સનોપ્રથમનિયમલખોઅનેસાબિતકરોકે	و
		"આંતરિકઊર્જાએગુણધર્મછે."	
પ્ર₋પ	(A)	૧કિ.ગ્રા. વાયુનાજથ્થાનેબંધવાસણમારબારથીપબારસુધીગરમકરવામાઆવેછે.	و
		વાયુનુશરુઆતનુઉષ્ણતામાન૨૭°સે. છે. તોશોધો(૧) વાયુનુઅંતિમતાપમાન (૨)	
		આંતરિકશક્તિમાથતોફેરફારજોCv = 0.72KJ/KgK .	
	(B)	થર્મોડાયનેમિકનાપ્રથમનીયમનીમર્યાદાઓદર્શાવોઅનેથર્મોડાયનેમિકનાબીજાની	و
		યમનાકેલ્વીન-પ્લાન્કઅનેક્લોસિયસનાકથનલખો.	

પ્ર-૬	(A)	ગેસનાજુદાજુદાનિયમોલખીદરેકના PVT સંબંધદર્શાવો.	૭
	(B)	હવાનુંકદ0.1 m³ અનેદબાણ1.5 barછે.	و
		આહવાનુંઅયળતાપમાનેવિસ્તરણકરવામાંઆવેછે. જેથીતેનુંકદ0.5 m³થાયછે.	
		તોતેનુંછેવટનુંદબાણઅનેહીટએનર્જીનુંવહનશોધો.	
પ્ર-૭	(A)	ઓટોસાયકલ, ડીઝલસાયકલઅનેડયુલસાયકલની P-V અને T-	و
		Sડાયાગ્રામનાઉપયોગસાથેનીયેનામુદ્દાપરસરખામણીકરો	
		(1) અયળકોમ્પ્રેસનરેશિયોઅનેહીટએડીશન	
		(2) અયળકોમ્પ્રેસનરેશિયોઅનેહીટરીજેકશન.	
	(B)	એકડીઝલએન્જીનનોસંકોયનગુણોતર15અનેવિસ્તરણગુણોતર7.5છે.	و
		તોતેનોકટઓફરેશ્યોઅનેએરસ્ટાન્ડર્ડદક્ષતાશોધો. γ=1.4લો.	
પ્ર -૮	(A)	ઓટોસાયકલ P-V અને T-S	و
		ડાયાગ્રામનાઉપયોગસાથેવર્ણવોઅનેઆસાયકલમાટેઉષ્મીયદક્ષતાનુંસુત્રપ્રસ્થાપિ	
		તકરો.	
	(B)	ઓટોસાયકલપરકામકરતાએકએન્જીનનાસીલીન્ડરનોવ્યાસ150mmઅનેસ્ટ્રોકલં	و
		બાઈ225 mmછે. જોતેનુંક્લીયરન્સવોલ્યુમ125×10 ⁻⁵ m³	
		હોયતોએન્જીનનીએરસ્ટાન્ડર્ડદક્ષતાશોધો. γ=1.4લો.	